Прочность корпуса определяет способность судна воспринимать действующие в процессе эксплуатации нагрузки, не разрушаясь. Для оценки прочности судна определяют внешние нагрузки, действующие на корпус, напряжения в различных наиболее нагруженных его элементах и сопоставляют их с нормативными допускаемыми значениями. Если полученные расчетом напряжения не превышают допустимое, то прочность корпуса считается обеспеченной. При этом очень важно, чтобы прочность корпуса была достаточной при минимальной массе. Корпусы речных судов рассчитывают в соответствии с Правилами Регистра Судоходства Украины.
На корпус движущегося судна могут действовать постоянные и случайные нагрузки. Постоянные нагрузки, действующие в течение всего периода эксплуатации, — это вес корпуса, надстроек, судовых механизмов и принятого груза, силы поддержания и силы сопротивления воды движению судна. Случайные нагрузки воздействуют на корпус в течение какого-либо промежутка времени и возникают при ударах волн, посадке судна на мель, столкновении судов.
Для упрощения расчетов действующие нагрузки условно делят на две категории: вызывающие общий изгиб корпуса или местный изгиб отдельных его элементов.
При плавании на тихой воде изгиб корпуса вызывается неравномерностью распределения по длине судна сил тяжести и сил поддержания. Для построения эпюры весовой нагрузки qB (рис. 14, а) принимают, что силы тяжести, действующие в пределах каждой теоретической шпации, распределены равномерно. Значение этих сил рассчитывают для каждой шпации отдельно с учетом всех составляющих. Силы поддержания распределяются по длине судна пропорционально погруженным площадям шпангоутов, что и отражает эпюра этих сил
Полученную ступенчатую нагрузку, равную разности сил тяжести и сил поддержания, называют эпюрой нагрузки судна q (рис. 14, б).
По нагрузке судна вычисляют срезывающие силы FТВ и изгибающие моменты МТВ, действующие на корпус при плавании на тихой воде. Их определяют соответственно как сумму сил или сумму моментов, взятых слева или справа от рассматриваемого сечения. Значение и знак изгибающего момента в каждом сечении корпуса зависят от характера распределения нагрузок по длине судна. Очевидно, что чем больше неравномерность нагрузки, тем больше и изгибающий момент.
|
Рис. 14. Эпюры нагрузок, вызывающих общий изгиб корпуса
При выходе судна на волну силы поддержания перераспределяются по длине корпуса благодаря_изменению формы погруженного объема. При этом судно может попасть миделем на вершину (рис. 15, а) или на впадину волны (рис. 15, б). В первом случае в палубе возникают дополнительные напряжения растяжения (+Ds), а в днище — сжатия (-Ds), что соответствует перегибу корпуса; во втором, наоборот, палуба подвергается дополнительному сжатию, а днище — растяжению, что соответствует прогибу корпуса.
|
Рис. 15. Положение судна при постановке на волну
Наибольшие расчетные изгибающие моменты как для прогиба, так и для перегиба (Мр, кН * м) вычисляют алгебраическим суммированием наибольших значений изгибающих моментов, возникающих на тихой воде, с дополнительным волновым изгибающим моментом М дв:
МР = МТВ + МДВ
Аналогично наибольшие расчетные перерезывающие силы как для прогиба, так и для перегиба определяют алгебраическим суммированием наибольших значений перерезывающих сил, возникающих на тихой воде FTB, с дополнительной волновой перерезывающей силой FДВ:
FР = FТВ + FДВ.
Способность корпуса выдерживать нагрузки, действующие на отдельные его перекрытия и связи, определяет местную прочность. Среди местных нагрузок выделяют гидростатическое давление при аварийных затоплениях отсеков, сосредоточенные и распределенные силы при приеме и снятии грузов в районе грузоподъемных устройств, реакции кильблоков при постановке в док, сосредоточенные силы при швартовке и буксировке, силы обжатия корпуса льдом при ледовой проводке судна.